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Abstract
Achieving net-zero emissions requires a significant expansion in the deployment of clean technolo-
gies compared to current levels. These renewable technologies play a critical role in modern energy
systems, increasing flexibility and better meeting end-use demands. Accurately assessing the po-
tential of these energy systems necessitates a comprehensive understanding of their costs and envi-
ronmental impacts. This research addresses this need by integrating Life Cycle Assessment (LCA)
methodologies with energy system optimization models, creating a robust framework that evaluates
both environmental impact and cost. A more generalized LCA indicator set was developed, and a
refined database, free of double-counting, was implemented. The new methodology and database
were validated through a comparative case study and further applied to a real-world scenario in
Spain.

The analysis highlights the improvements in the LCA framework, where correlation analysis and
multi-objective optimization using K-means clustering enabled the selection of representative indi-
cators, simplifying normalization in optimization tasks. This integrated framework, implemented
through Python scripts and AMPL models, provides key insights into the environmental impact of
energy systems. Its application in the case study for a community in Spain offers valuable guidance
for decarbonization strategies, contributing to more sustainable energy solutions.
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1 Introduction
1.1 Background
1.1.1 Energy system

In response to climate change and its impact to all kinds of industries, especially through increas-
ingly frequent extreme weather events[1][2], energy systems are evolving to become more adaptive
and flexible[3]. With international frameworks like the Paris Agreement pushing for significant
reductions in global greenhouse gas emissions[4], there is a growing demand for energy systems
that align with these sustainability goals. Traditional energy systems, which were primarily evalu-
ated based on economic efficiency and profit, are now being reimagined to balance environmental
sustainability, resilience, and cost-effectiveness[5][6]. Modern energy systems emphasize not only
producing energy but also managing it in a way that minimizes environmental impacts, ensures
resilience against unpredictable conditions, and incorporates renewable energy sources. This shift
underscores the need for a comprehensive approach that integrates advanced technologies, flexible
energy distribution, and sustainable practices to meet the demands of a changing world and the
commitments outlined in the Paris Agreement.

1.1.2 LCA

Life Cycle Assessment (LCA) is a widely used methodology for assessing the environmental impacts
associated with various clean technologies. It encompasses a broad range of factors, including
global warming potential (GWP), ozone depletion, particulate matter emissions, and more. LCA
methods typically involve the detailed tracking of material and energy flows entering and leaving
the environment throughout a product’s life cycle. By quantifying these flows using comprehensive
data, the overall environmental impact of a technology or process can be accurately assessed. This
holistic approach enables more informed decision-making, promoting the adoption of technologies
that minimize environmental footprints.

The process of conducting an LCA generally follows four key stages: (1) defining the goal and scope
of the assessment, (2) compiling a life cycle inventory of all relevant material and energy inputs
and outputs, (3) performing a life cycle impact assessment by evaluating potential environmental
impacts, and (4) interpreting the results to inform improvements or decision-making. This system-
atic approach ensures that environmental impacts are considered across all phases of a product’s
life, from raw material extraction to production, use, and disposal[7].

1
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Figure 1: Overview of the Life Cycle Assessment (LCA) Mechanism

The production process serves as a conduit for calculating the environmental impacts of a product.
The incoming flows include both direct materials and direct energy, along with indirect energy and
material inputs. These flows, and their associated environmental impacts, contribute to the overall
environmental footprint of the product. In essence, the LCA of a product is the cumulative sum of
the environmental impacts from all relevant exchange flows associated with its production.

The popularity of LCA has grown since 1990, with increased environmental awareness [8]. However,
LCA faced criticism during its early development due to high expectations. Over the years, there
has been substantial progress and refinement in LCA standards and practices. In 2008, Jørgensen
et al. [9] conducted a comprehensive LCA technology review. Since then, LCA’s applications have
expanded into various areas, including waste management, technology assessment, energy sector
decision-making, product system improvement and energy system optimization[10][11].

1.2 REHO - Renewable energy hub optimizer
REHO, the abbreviation for the Renewable Energy Hub Optimizer, is an open-source tool developed
by EPFL. This model integrates multiple technologies to address district-level energy optimization
challenges. The problem is decomposed into several sub-problems (individual house optimization)
and a master problem (district optimization), as illustrated in Figure 2. The optimization starts
at the individual house level, generating several potential configurations for each house. These
configurations are then passed to the district-level optimization, where all possible combinations of
house configurations, along with district-specific units, are iterated to identify the global optimal
configuration for the entire district.

2
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Figure 2: Overview of the Renewable Energy Hub Optimizer (REHO) Mechanism [12]

In this model, given the end-use demand (EUD) profiles derived from meteorological data and
building characteristics, and the available resources (such as grids and equipment for converting
resources into the required energy services), REHO performs multi-objective optimization across
different scenarios. This optimization is powered by AMPL. REHO provides a flexible platform for
energy system planning.

1.3 Research gap
The current REHO model incorporates certain aspects of Life-Cycle Assessment (LCA), but signif-
icant limitations reveal a clear research gap. One major issue is the quality of the LCA database,
which is insufficiently robust, leading to inaccuracies in assessment results. This deficiency is ev-
ident in two key areas: firstly, the existing database lacks units for its values, creating ambiguity
in the data; secondly, the absence of declared data sources means it is unclear what methods have
been employed for the LCA, reducing transparency and reliability. Moreover, the methodological
framework lacks the rigor and detail required to produce dependable LCA outcomes, which limits
the overall effectiveness of the model.

In addition, the REHO model is expected to be used in conjunction with or compared against
another energy model, Energyscope[13], as noted by REHO’s developers. This comparison under-
scores the need for a consistent and standardized LCA methodology to ensure valid comparisons.
Addressing these issues calls for the development of a more comprehensive and transparent LCA
database, coupled with a more rigorous methodological framework. These improvements are es-
sential for enhancing both the accuracy and credibility of LCA within the model. Furthermore,
integrating advanced LCA techniques alongside multi-objective optimization and real case stud-
ies for pilot sites will ensure a more holistic and reliable approach to sustainable energy system
planning.

3
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2 Methodology
The methodology developed is primarily designed to complete the integration of Life Cycle Assess-
ment (LCA) while also paving the way for future multi-objective optimization. The overall process
is divided into three key phases: LCA Database Creation, LCA Methodology Integration, and Nor-
malization. These steps are carried out using a series of toolchains, including Mescal, Brightway2,
and Energyscope. In some cases, new concepts were learned, introduced and applied in my own
energy system model, while in others, specific tasks were accomplished through the capabilities of
these tools. The general framework for this methodology is illustrated in the figure below.

Figure 3: General Methodology for Integrating the Life Cycle Assessment (LCA) Framework into
the Renewable Energy Hub Optimizer (REHO)

2.1 Original LCA Methodology in REHO
In the original REHO methodology, lifecycle analysis (LCA) for technologies is divided into two
stages: Construction and Operation. The construction phase accounts for the environmental im-
pacts over the entire lifecycle of each technology. Instead of analyzing the operation phase seper-
ately, the total exchange between resources/grids and the technologies/units represents the op-
eration phase. As illustrated in the figure below, the resources and grids are positioned on the
left side of the dotted line, while the technologies and units are on the right. The total exchange
between these two sides reflects the amount of energy consumed from or returned to the external
environment.

4
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Figure 4: Predefined Energy System Model at Building Scale in the Renewable Energy Hub Opti-
mizer (REHO)

3 layers are represented here(Electricity, Heat and Gas) and 9 technologies allow conversion of
quantities between layers.

However, the LCA in the original REHO is not sufficiently comprehensive or convincing for several
reasons. In the following, we will examine how the LCA was conducted to identify areas for potential
improvement. For the district level, please refer to the Appendix Fig 34

2.1.1 REHO Construction Model

As we all know, environmental impacts can be viewed as another kind of cost, as they share
many similar properties with economic costs, particularly in the context of energy systems [14].
The consideration of Renewable Energy Hub Optimization (REHO) for construction life cycle
assessment (LCA) is similarly based on the distinction between fixed and variable costs. In cost
analysis, fixed costs typically refer to indirect contributions, such as rent, technology repayments,
and other overhead expenses. In contrast, variable costs are tied to direct inputs and fluctuate
with production volumes, including raw materials [15]. Consequently, the LCA within REHO for
construction can be represented as the following calculation:

LCAconstr =
∑

u∈Units

UseofUnits(u) ∗ eifixed(u) + SizeofUnits(u) ∗ eivariable(u)
lifetime(u) (1)

where

• LCAconstr represents the total construction environmental impacts in the energy system.

5
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• UseofUnits(u) is a binary variable for denoting the use of units; 1 means using while 0 means
not using.

• eifixed(u) is the fixed environmental impact of unit u.

• eivariable is the variable environmental impact of unit u.

• SizeofUnits(u) is the installed capacity for the unit u.

• lifetime(u) is lifetime of unit u.

Figure 5: Comparison of Fixed and Variable Costs in Business Operations

In cost analysis, fixed and variable costs can be determined by selecting two points on the cost
evolution curve and drawing a secant line in the Cartesian coordinate system. The slope of this
secant represents the variable cost, while its intersection with the Y-axis represents the fixed cost,
as illustrated in the figure above.

However, in the context of LCA, there is limited literature addressing the scale-up effect, i.e.,
the relationship between environmental impacts and production volume. Moreover, unlike cost
analysis, it is challenging to clearly define fixed and variable environmental impacts. Therefore, the
methodology for assessing the environmental impacts of construction requires refinement.

2.1.2 REHO Operation Model

As mentioned before, the LCA for operation in REHO considers the total exchange between the
unit side and the grid side. The calculation could be formulated as:

EIsup(l, u, t) = eisupply(l, u, t) · Networksupply(l, u, t) (2)

EIdem(l, u, t) = eidemand(l, u, t) · Networkdemand(l, u, t). (3)

6
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LCAop =
∑

l∈ResourceBalances,u∈units,t∈Time
(EIsup(l, u, t) − EIdem(l, u, t)) (4)

Where,

• LCAop represents the total operation environmental impacts in the energy system.

• EIsup(l, u, t) is the total environmental impacts of unit u supply to the energy layerl at time
t.

• EIdem(l, u, t) is the total environmental impacts of unit u demand from the energy layerl at
time t.

• eisupply/demand is the unit environmental impact.

• Networksupply is the quantity of energy supply from the network to the system.

• Networkdemand is the quantity of energy supply to the network from the system.

The Life Cycle Assessment (LCA) for operational performance typically assumes that the system
functions like a conduit, where energy flows in, is converted into another form, and flows out without
any significant consumption of energy. However, this assumption is unrealistic due to the Second
Law of Thermodynamics. In reality, during such processes, entropy will inevitably increase, meaning
that energy cannot be fully transformed from one ordered state to another without losses.

For instance, consider the example of a gas boiler. The figure below illustrates the material and
energy flow exchanges within the gas boiler operation phase.

Figure 6: Detailed Exchange Flows for a Natural Gas Boiler in Ecoinvent

In addition to natural gas, which is considered in the operation phase of REHO, and the construction
of natural gas boilers, which is accounted for in the construction phase, electricity usage has been
neglected in the Life Cycle Assessment (LCA) of REHO (see Figure 3). This emphasizes the need

7
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for a new methodology that incorporates electricity consumption into the operation phase, ensuring
a more comprehensive assessment.

2.1.3 LCA indicators

There are two main issues with the current LCA datasets in REHO. First, the LCA data being
used in REHO lacks credibility, as it is not accompanied by units or standards. Typically, it is
essential to declare the specific LCA methodology being employed, such as IPCC 2013 or ReCiPe
Midpoint (I), since the evaluation approaches vary significantly between methods. In comparative
studies, clearly stating the method used is critical to ensure consistency and reliability.

The second issue is that the indicators used in REHO are limited. As shown in the table below,
there are only 13 indicators, which is insufficient to capture the full scope of environmental impacts.
Therefore, expanding the range of indicators and improving the generalization of the dataset are
key areas that need attention for improvements.

Table 1: Original LCA Indicators and Corresponding Environmental Impacts

Abbreviation Environmental Impact
GWP Global Warming Potential
land_use Land Use
mine_res Mineral Resource Utilization
water_res Water Resource Utilization
energy_res Energy Resource Utilization
human_toxicity Human Toxicity
water_pollutants Water Pollutants
metals_water Metals in Water
pop_water Persistent Organic Pollutants in Water
metals_soil Metals in Soil
pollutants_pm Particulate Matter Pollutants
metal_air Metals in Air
ozone_depletion Ozone Layer Depletion

2.2 New Methodology
Due to several shortcomings in REHO’s Life Cycle Assessment (LCA), a new LCA methodology
has been proposed and integrated into REHO. While Energyscope [13] represents another advanced
energy system optimization model, it differs from REHO in scale and application. Energyscope
is a novel open-source model designed for strategic energy planning at a national level, whereas
REHO focuses on a district scale. Despite its advantages, Energyscope also has limitations, such
as a lower level of technico-economic resolution and lack of market equilibrium.

Nevertheless, Energyscope employs a comprehensive LCA methodology for energy systems, which
offers valuable insights that can be adapted for use in REHO. Consequently, the LCA methodology
from Energyscope has been adapted and implemented into REHO [16].

8
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Figure 7: Overview of an energy system in Energyscope.

4 layers are represented here(Electricity, Heat, Passenger Mobility and Gas) and 7 technologies
allow conversion of quantities between layers.

2.2.1 LCA Methodology integration

From the perspective of Energyscope, the lifecycle of technologies is categorized into three distinct
phases: resource extraction, operation, and construction. This approach extends beyond merely
considering the operation and construction of units. The general formulation of this lifecycle
assessment can be expressed as follows:

LCAtot =
∑

(LCAres + LCAop + LCAconstr) (5)

2.2.2 Resource

Considering the resource extraction phase is crucial because, for example, a gas boiler can use either
renewable gas or fossil gas as input. In the original REHO model, however, the environmental
impacts of using both types of gas in the boiler are considered identical since it only accounts for
the construction and operation of the natural gas boiler. This approach is unrealistic.

9
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Including the resource extraction stage allows us to capture the environmental impacts associated
with the extraction of resources. In REHO, this extraction process is indeed the energy exchange
between districts and networks, the formulation for this stage can be expressed as follows:

EIsup(l, u, t) = eisupply(l, u, t) · Networksupply(l, u, t) (6)

EIdem(l, u, t) = eidemand(l, u, t) · Networkdemand(l, u, t). (7)

LCAres =
∑

l∈ResourceBalances,u∈units,t∈Time
(EIsup(l, u, t) − EIdem(l, u, t)) (8)

Where,

• LCAres represents the total resource environmental impacts in the energy system.

• EIsup(l, u, t) is the total environmental impacts of unit u supply to the energy layerl at time
t.

• EIdem(l, u, t) is the total environmental impacts of unit u demand from the energy layerl at
time t.

• eisupply/demand is the unit environmental impact.

• Networksupply is the quantity of energy supply from the network to the system.

• Networkdemand is the quantity of energy supply to the network from the system.

The original operation stage is the same with the resource stage.

2.2.3 Construction

As previously mentioned, determining fixed environmental impacts is unnecessary due to the lack of
literature on scale-up effects in LCA and the absence of intuitive physical meaning for these fixed
impacts. Consequently, fixed environmental impacts are excluded from this research. Instead,
we assume that the environmental impacts of construction are proportional to the equipment’s
capacity. The formulation can thus be summarized as follows:

LCAconstr =
∑

u∈Units

SizeofUnits(u) ∗ eivariable(u)
lifetime(u) (9)

where

• LCAconstr represents the total construction environmental impacts in the energy system.

• eivariable is the variable environmental impact of unit u.

• SizeofUnits(u) is the installed capacity for the unit u.

• lifetime(u) is lifetime of unit u.
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2.2.4 Operation

The operation phase is the truly neglected aspect in REHO. To accurately assess the environmental
impacts of operation, we exclude energy and material flows originating from the resource extraction
and construction phases in our database. The operational LCA is calculated by multiplying the
working hours of the units by the operational lifecycle assessment inventory and the unit’s output
capacity. The calculation of operational environmental impacts is detailed below, and the process
for eliminating double counting will be discussed subsequently in LCA database creation part.

LCAop =
∑

l∈ResourceBalances,u∈Units,t∈T ime

eiop(u) ∗ Units_Supply(l, u) ∗ t (10)

where

• LCAop represents the total operation environmental impacts in the energy system.

• eiop is the operation environmental impact of unit u.

• Units_Supply(l, u) is the unit u’s output in energy layer l.

• t is the unit working time.

2.3 LCA database creation
The creation of new LCA database is based on an open-source framework for Life Cycle Assessment,
brightway2[17]. Its combination of a modular structure, the expressiveness and interactivity of
Python and in particular Jupyter notebooks, and tuned calculation pathways allows for new research
directions in Life Cycle Assessment. The database we are going to use is ecoinvent[18], which is
widely used in LCA especially in Europe.

2.3.1 Generalization of LCA indicators

Due to insufficient and unconvincing LCA indicators in REHO, and to facilitate a better com-
parison between REHO and other energy system optimization models, particularly Energyscope,
a generalization of the LCA indicators is necessary. The new LCA method utilized in REHO is
World IMPACT + [19]. World IMPACT + offers a comprehensive and detailed assessment of en-
vironmental impacts across various categories, ensuring a thorough evaluation of sustainability. It
integrates multiple impact categories, including resource use, emissions, and environmental degra-
dation, providing a holistic view of environmental performance. Additionally, since Energyscope
also employs World IMPACT +, using the same method will simplify comparisons. Furthermore,
World IMPACT + includes internal packages specifically for Brightway, making it more manageable
and user-friendly.

After generalization, 37 different environmental impact indicators can be used for evaluation as the
table listed below:
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Table 2: Environmental Impact Categories

Impact category Unit Abbrev
Climate change, ecosystem quality, long term PDF.m2.yr CCEQL
Climate change, ecosystem quality, short term PDF.m2.yr CCEQS
Climate change, ecosystem quality, long term, fossil and biogenic PDF.m2.yr CCEQLB
Climate change, ecosystem quality, short term, fossil and biogenic PDF.m2.yr CCEQSB
Climate change, human health, long term DALY CCHHL
Climate change, human health, short term DALY CCHHS
Climate change, human health, long term, fossil and biogenic DALY CCHHLB
Climate change, human health, short term, fossil and biogenic DALY CCHHSB
Freshwater acidification PDF.m2.yr FWA
Freshwater ecotoxicity, long term PDF.m2.yr FWEXL
Freshwater ecotoxicity, short term PDF.m2.yr FWEXS
Freshwater eutrophication PDF.m2.yr FWEU
Human toxicity cancer, long term DALY HTXCL
Human toxicity cancer, short term DALY HTXCS
Human toxicity non-cancer, long term DALY HTXNCL
Human toxicity non-cancer, short term DALY HTXNCS
Ionizing radiation, ecosystem quality PDF.m2.yr IREQ
Ionizing radiation, human health DALY IRHH
Land occupation, biodiversity PDF.m2.yr LOBDV
Land transformation, biodiversity PDF.m2.yr LTBDV
Marine acidification, long term PDF.m2.yr MAL
Marine acidification, short term PDF.m2.yr MAS
Marine acidification, long term, fossil and biogenic PDF.m2.yr MALB
Marine acidification, short term, fossil and biogenic PDF.m2.yr MASB
Marine eutrophication PDF.m2.yr MEU
Ozone layer depletion DALY OLD
Particulate matter formation DALY PMF
Photochemical oxidant formation DALY PCOX
Terrestrial acidification PDF.m2.yr TRA
Thermally polluted water PDF.m2.yr TPW
Water availability, freshwater ecosystem PDF.m2.yr WAVFWES
Water availability, human health DALY WAVHH
Water availability, terrestrial ecosystem PDF.m2.yr WAVTES
Total ecosystem quality PDF.m2.yr TTEQ
Total human health DALY TTHH
Total ecosystem quality, fossil and biogenic PDF.m2.yr TTEQB
Total human health, fossil and biogenic DALY TTHHB

Meanwhile, the GWP (Global Warming Potential) indicator continues to rely on the IPCC 2013
methodology primarily due to its widespread recognition for consistency and stability. Many LCA
databases and software tools, such as Ecoinvent and SimaPro, still frequently default to IPCC 2013
values. This means that IPCC 2013, GWP 100 remains a common choice for calculating GWP,
ensuring compatibility with previous studies and established datasets.
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2.3.2 Double counting removal

Figure 8: Mapping Examples Between Energy System-Specific Technologies and the LCA Database

In LCA, we use the lifecycle inventory like ecoinvent. While in energy system modeling, units are
manually defined by their inputs and outputs. To coordinate, the units in energy system model
will be corresponded to exsiting items in the LCA database. And double counting occurs during
this process.

For instance, a natural gas boiler is modeled with natural gas as its input and heat as its output.
Both the construction of the natural gas boiler and the provision of natural gas are accounted for in
the construction and resource phases, respectively. However, additional energy and material flows
occur during the boiler’s operation. These flows are addressed in the operation life cycle assessment
(LCA). In the Ecoinvent database, the operation of technologies considers both construction and
resource flows. Therefore, it is necessary to eliminate the effects from these flows to align with our
methodology and avoid double counting.

The tool used for double counting removal is Mescal [20], developed specifically for use with the
same LCA methodology as another energy system optimization model, EnergyScope. The basic
logic for double counting removal employed by Mescal is shown below:
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Figure 9: Flowchart of the Double Counting Removal Mechanism

The Central Product Classification (CPC) system is crucial for this task. It provides a coherent
and consistent framework for classifying products (both goods and services) based on a set of
internationally agreed concepts, definitions, principles, and classification rules [21]. Initially, each
input flow, predefined in our energy system model, is assigned a CPC category. This process results
in a comprehensive list L of CPC categories encompassing the technology inputs. Subsequently,
each technology is analyzed to assign CPC categories to its intermediary flows. These are then
compared with the list L. If an intermediary flow is found in list L, indicating it is already defined
as an input flow in our energy system, its flow amount is set to zero to avoid double counting. This
method effectively ensures the removal of double counting.

2.3.3 Refactor

In practice, after the removal of double counting, the quantity levels of several LCA indicators can
drop to extremely low values, ranging from 10−14 to 10−16. These values are too small for AMPL
to handle effectively. To avoid computational errors, all indicators are scaled by a refactor, with a
default value of 1000.

2.3.4 Files mapping

In the process of removing double counting, we assign numerous flows with their respective CPC
classifications using generative methods to boost mapping efficiency. The Industrial Ecology Ma-
chine Learning Mapping [22] is a Python module that employs machine learning to align two
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classifications based on word similarity. However, despite the utilization of this module, a manual
review of the mappings is still necessary to guarantee their accuracy.

Figure 10: Example Codes for Mapping Files Using Machine Learning Methods

Additionally, files are required to characterize the model by defining the output and input flows
for each technology. These flows are manually calculated based on both the technology’s efficiency
and power, establishing the relationship between resource inputs and technology operations. It
is crucial to determine how many resource inputs are required to produce one unit of output. A
portion of the model file is shown in the figure below:

Figure 11: Example Model Characteristic Files for Defining Inputs and Outputs for Each Technol-
ogy

Some technologies can be quite complex. To accurately characterize these, they need to be broken
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down into several simpler components. Therefore, a ‘technology_specific‘ file is required. For each
technology, the lifetime must be specified for calculating its construction LCA. Additionally, when
using our custom energy system, we may have unique units, necessitating a conversion file to bridge
our energy system model with Ecoinvent. For a more comprehensive understanding for these files,
please refer to my file folder.

2.4 Normalization
The purpose of normalization is to facilitate multi-objective optimization. The multi-objective
function is defined as:

Objective =
∑

wiXi (11)

where,

• wi is the weights for different KPIs.

• Xi is the i th indicator’s value.

The weights wi will be determined using generative algorithms, which requires all indicators to be
normalized to the same quantitative scale to ensure fair comparison and balanced contribution to
the overall objective function. However, in this project, only the preparatory steps for normalization
have been completed. The methodology for multi-objective optimization still follows the original
REHO approach, which will be introduced in a later section.

2.4.1 Normalization

The normalization utilized the formulation below:

Xnormalized = X − Xmin

Xmax − Xmin
(12)

Where X means the LCA indicators. To obtain the minimum value of X, we can simply set the
objective to the specific LCA indicators we wish to normalize. However, because all constraints
are aimed at minimizing these indicators, determining the maximum value of X poses a challenge,
as the system will not converge under such conditions. Therefore, our approach is to minimize the
other LCA indicators. Among these results, we can then identify the maximum value for the LCA
indicators we wish to normalize.

2.4.2 Correlation analysis among indicators

Since there are as many as 29 LCA indicators, optimizing them individually for complex scenar-
ios—such as 4,000 buildings with varying features—would be computationally intensive, increasing
the time complexity 29-fold. To simplify this process, a correlation analysis is employed. By cal-
culating the Pearson correlation coefficient between each indicator [23], we can identify the most
influential indicators. This allows us to focus optimization efforts on these key indicators rather
than optimizing all 22, significantly reducing computational complexity while maintaining accuracy
in the results.
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The Pearson correlation coefficient, denoted as r, between two LCA indicators X and Y is calculated
using the formula:

rXY =
∑(Xi − X̄)(Yi − Ȳ )√∑(Xi − X̄)2 ∑(Yi − Ȳ )2

(13)

where:

• Xi and Yi are the individual data points of variables X and Y ,

• X̄ and Ȳ are the mean values of X and Y , respectively,

• ∑ represents the summation over all data points.

2.4.3 Multi-objective optimization

In multi-objective optimization, various methodologies exist, including scalarization methods [24],
Pareto-based approaches [25], and epsilon-constraint methods [26], among others. In REHO, the
epsilon-constraint method is employed for optimization.

The epsilon-constraint method is a widely used approach in multi-objective optimization where one
objective is optimized, while the remaining objectives are transformed into constraints with upper
bound limits, called epsilon (ϵ) values. In REHO, these constraints are defined as below:

Objective + Slack_V ariable = ϵArea_tot (14)

This constraint ensures that the indicators remain within a limit defined by ϵ (represented as
EMOO_CAPEX, EMOO_GWP, etc.), adjusted by the total area. In the REHO objective func-
tions, penalty terms are incorporated to address potential constraint violations. These penalties
act as a corrective measure: if any objective exceeds its specified limit, the penalty term increases,
driving the solution toward feasible regions that comply with the epsilon constraints. This mech-
anism effectively guides the optimization process to respect the imposed limits while balancing
trade-offs between objectives.
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Figure 12: Multi-Objective Optimization (MOO) Using Epsilon Constraints in the Renewable
Energy Hub Optimizer (REHO)

Figure 13: Components of the Objective Functions in the Renewable Energy Hub Optimizer
(REHO)
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3 Case Study
3.1 Case Study for Lugaritz-Matía Community in Spain[27]
3.1.1 Introduction

Located in the vibrant city of San Sebastián, in the heart of Basque Country, the Lugaritz-Matía
Community pilot is a pioneering initiative integrating modern healthcare facilities with a cutting-
edge, sustainable energy network. This project encompasses three key institutions: the Birmingham
Hospital and two nursing homes, Rezola and Lugaritz, which collectively serve around 700 residents
and span a total heated area of 40,000 m2. The pilot is a model for how healthcare institutions can
adopt innovative energy solutions to improve efficiency and sustainability.

3.1.2 Facility Overview

The Lugaritz-Matía Community pilot comprises:

• Birmingham Hospital: The primary medical institution in the network, composed of hos-
pital and swimming pool. Several technologies are utilized, including a condensing boiler
using biomass (District Heating), a conventional boiler, an air-source heat pump (ASHP),
and solar thermal systems.

• Rezola Nursing Home: A facility dedicated to the long-term care of elderly residents,
composed of only residential nursing home. The system utilizes district heating powered by a
biomass-fueled condensing boiler, along with additional conventional and condensing boilers.

• Lugaritz Nursing Home: Another key institution composed of residential nursing home
and administrative office. The setup includes district heating with a biomass-fueled condens-
ing boiler, a ground-source heat pump (GSHP), and a chiller recovery system.

For more details on the three buildings, refer to the appendix (Fig 37, Fig 38). However, before
diving into the case study, several clarifications are needed. First, the database used lacks credibility
and is missing some crucial information. For instance, as shown in the appendix figures, the average
thermal transmittance for facades and roofs is extremely high, with the value for the building Rezola
exceeding 1kW/(m2 ·K). In contrast, single glazing in typical building structures accounts for only
5.7 W/(m2 · K). Even when the unit is converted from kW/(m2 · K) to W/(m2 · K), these values
remain unrealistic.

To address this, we replaced the unrealistic values by reviewing REHO’s internal building files and
selecting data from buildings constructed in recent decades. Additionally, instead of using lati-
tude and longitude directly—information which is also missing from the datafile—REHO requires
converting these coordinates into an X and Y coordinate system using the EPSG:2054 standard
[28].

In cases where data, such as DHN and DataHeat, could not be found in the Ecoinvent database, I
replaced missing values with 0.0. However, this caused the problem to fail to converge. As a result,
we can only set the objectives using the original indicators (GWP, TOTEX, OPEX).
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Figure 14: Pilot View from Satellite[27]

3.1.3 Information to input

In the REHO model, three primary types of inputs are utilized:

• End Use Demands (EUDs): Calculated based on weather data and building characteris-
tics. Weather data is automatically fetched from the PVGIS database, providing yearly data
which is then clustered into typical days for use in REHO.

• Resources: Includes grids to which the system has access for providing the EUDs.

• Equipment: Consists of the technologies used to convert resources into required services.
Detailed in the Life Cycle Assessment (LCA) for building units, district units, and grids.

In the methodology section, I mentioned the integration of equipment and resource data within the
REHO framework, emphasizing our strategy for developing a comprehensive Life Cycle Assessment
(LCA) database. This database was constructed based on initial files from original technologies,
which included detailed information on each technology’s capacity, cost, lifetime, and other perti-
nent metrics. These LCA features were then seamlessly merged with the original data files, creating
a unified resource that integrates environmental impact assessments with functional characteristics.
This modification was crucial because REHO has a unique data processing approach; it reads CSV
files and converts the dataframes into parameters that the AMPL model requires, ensuring efficient
data flow and model integration.

3.1.4 Building Characteristics Datafile Format

The building characteristics require manual generation of a datafile with the necessary columns as
follows:

area_era_m2 Total floor area in square meters.

id_building Identifier for the building.

temperature_cooling_supply_C Supply temperature for cooling in degrees Celsius.

temperature_cooling_return_C Return temperature for cooling in degrees Celsius.
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temperature_heating_supply_C Supply temperature for heating in degrees Celsius.

temperature_heating_return_C Return temperature for heating in degrees Celsius.

area_facade_m2 Area of the facade in square meters.

area_roof_solar_m2 Area of solar panels on the roof in square meters.

temperature_interior_C Interior temperature in degrees Celsius.

ratio Usage ratio or occupancy rate.

status Operational status of the building.

id_class Classification ID for the building.

thermal_specific_capacity_Wh_m2_K Thermal capacity per unit area.

thermal_transmittance_signature_kW_m2_K Thermal transmittance signature.

height_m Building height in meters.

x X-coordinate for geographic location.

y Y-coordinate for geographic location.

geometry Geometric data or shape of the building.

3.1.5 2 different scenarios

Two distinct scenario case studies were performed for the pilot site:

• Scenario 1: This scenario involved simulating the existing energy system of the pilot site to
understand its current performance and identify potential areas for improvement.

• Scenario 2: This scenario focused on optimization without constraints, meaning no consid-
eration was given to prior investments. Additionally, it aimed for a fossil-free operation by
excluding the use of non-renewable energy sources such as natural gas (NG) boilers and oil
boilers.

3.2 Case study for verification
Meanwhile, an existing error in REHO arises when applying the district heating network feature
to Spain’s case study. End-use demands (EUDs), which should be determined by building charac-
teristics and weather data, are expected to remain consistent for a specific location across different
scenarios. However, due to an internal error in REHO, the EUDs for Spain differ between scenarios,
making comparisons invalid as the EUDs should remain constant.

To address this issue, a comparative case study was conducted using REHO’s example scripts to
validate the integration of the LCA framework and assess the generalization of LCA indicators
across different scenarios. This study ensures that the LCA methodology is implemented robustly,
accurately capturing and generalizing environmental impacts. The case study was performed for
Sion, Switzerland, under a basic scenario setup—without any enforced or excluded units. For a
comprehensive comparison, both the old and new datafiles were used separately to analyze varia-
tions in outcomes and identify any discrepancies.
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For detailed information regarding the default buildings, please refer to the building.csv file. The
figure below presents part of the buildings’ characteristics.

Figure 15: Examples of Partial Building Characteristics for Sion
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4 Results
Using the parameters, formulas, and datasets outlined earlier, we can derive a comprehensive set
of results. In this section, various results will be presented and analyzed, including figures, data
visualizations, and Sankey diagrams. Each of these elements will provide insight into the system’s
performance, highlighting key trends and outcomes. The following analysis will delve into the
implications of the results, examining correlations, discrepancies, and any unexpected behavior,
allowing for a thorough understanding of the system dynamics across different scenarios.

This section features multiple Sankey diagrams, where colors are used to represent different energy
sources and systems:

• Orange: District Heating Network (DHN)

• Black: Gas Boiler

• Green: Electricity

• Pink: Heat Pump

• Yellow: Photovoltaic (PV)

• Red: Domestic Hot Water (DHW)

4.1 Results for Sion’s case study
4.1.1 Comparative Analysis Between the Old and New Methodologies

To validate the successful integration of the new LCA methodology into REHO, a comparative
study between the old and new methodologies was conducted. The internal AMPL code and the
associated Python data processing scripts were updated to reflect the new methodology. The
scenarios analyzed are based on the 40 buildings included in the REHO example code, without
any additional features, and the objective function for optimization remains minimizing Global
Warming Potential (GWP). For consistency in comparison, the lifecycle inventory has been kept
unchanged. The End-Use Demands (EUDs) are displayed below:
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Figure 16: End-Use Demands (EUDs) Distribution for Sion’s Case

The primary contributor to the EUDs is collective housing, which accounts for 78.88% space heating
(SH), 13.77% electricity (elec), and 7.00% domestic hot water (DHW). As expected, both the
old and new methodologies resulted in the same energy and material flows, as illustrated by the
following Sankey diagram:

Figure 17: Sankey Diagram of Energy and Material Flows to Fulfill End-Use Demands (EUDs) in
Sion’s case

This outcome implies that both methodologies yield the same optimal configuration of the energy
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system. However, the key difference between the two methodologies lies in the operation phase of
the energy system, which ultimately affects the final GWP results. The comparison between the
final values for the new and original methodologies is shown below:

Figure 18: Global Warming Potential
(GWP) Optimization Results from the New
Methodology for Sion’s Case Study

Figure 19: Global Warming Potential
(GWP) Optimization Results from the Orig-
inal Methodology for Sion’s Case Study

The results indicate that both energy systems could reduce GWP by over 120,000 units (no specific
units are available, as the old database lacks this information, which also contributes to its lower
credibility). The differences observed between the two methodologies can be attributed to their
treatment of the operation and construction phases. Specifically, the new methodology accounts
for both operational and construction GWP in a different manner, resulting in variations in the
final GWP values.

4.1.2 Generalization for LCA indicators

To explore the generalization of LCA indicators, the new database, after the removal of double
counting, is utilized. The scenarios remain the same for consistency. To better interpret the results,
various Sankey diagrams are compared. Since the purpose of this section is to showcase the new
methodology and database, the scenarios are selected from REHO’s internal examples. Therefore,
the specific numerical values generated by REHO are not the primary focus. Instead, the emphasis
is on comparing the results with the original REHO outputs to highlight any differences.

If we continue to set GWP as the optimization objective, the resulting Sankey diagram closely
resembles the original:
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Figure 20: Sankey Diagram of Energy and Material Flows to Optimize GWP in Sion’s Case

This demonstrates that when optimizing for GWP, photovoltaic (PV) systems are extensively
utilized, while fossil-based technologies are excluded in order to minimize global warming potential.
The corresponding optimized results are shown below:

Figure 21: Optimized Results for Global Warming Potential (GWP)

Although the result appears significantly smaller than those previously shown, this is due to the
scaling factor of 1000 applied to all indicators, as mentioned earlier. Using the IPCC 2013 method,
the actual value is approximately −96, 136 (kg CO2 eq), which is much more convincing.

If we change the optimization objective from GWP to LOBDV (Land Occupation, Biodiversity),
the system behaves differently:
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Figure 22: Sankey Diagram of Energy and Material Flows for Optimizing Land Occupation and
Biodiversity (LOBDV) in Sion’s Case

In this case, the energy system limits the use of PV panels due to their large land occupation.
Instead, gas boilers are widely used to provide heat, reducing the reliance of electricity on heat
pumps that would otherwise require significant land area to operate.

There are 27 additional LCA indicators, each with its own optimal configuration. By considering
these indicators, the generalization of the LCA indicators is successfully achieved.

4.2 Results for Spain’s case study
The scenarios for Spain utilized multiple energy technologies, with the data sourced from the In-
terPED project. Two optimization scenarios were conducted. In the first scenario, the technologies
remained unchanged, and a comprehensive simulation of the existing energy system was performed
to identify potential areas for improvement. The second scenario focused on achieving a carbon-free
energy system by excluding carbon-emitting technologies, with the aim of maximizing the system’s
performance based on various objectives. These optimizations provide valuable insights into the
trade-offs and challenges involved in transitioning to a more sustainable energy system.

4.2.1 Scenario 1: current scenario simulation

In the current scenario, technologies such as ’HeatPump_Air’, ’HeatPump_Geothermal’, ’NG_Boiler’,
’OIL_Boiler’, ’ThermalSolar’, and ’PV’ are fixed based on the pilot datasets, as shown in Figure
37. It means the composition of the energy system is fixed. Thus it’s not optimization and it’s
just simulation. Additionally, a water district heating network (DHN) is utilized in this case. To
integrate these technologies into REHO, some minor adjustments are necessary. For instance, in the
CSV file, the thermal solar system for the Bermingham building is specified as 40 × 0.4. However,
in REHO, the required unit for thermal solar is 2.32. Therefore, an integer multiple of 16.24 is
used to substitute for 16.
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After all the necessities prepared, the simulation based on the old datasets are performed:

Figure 23: Sankey Diagram of Energy and Material Flows Using the Old Dataset in REHO for
GWP Optimization

Nevertheless, for the new double counting removal database, the simulation sankey performs like
this:

Figure 24: Sankey Diagram of Energy and Material Flows Using the Double Counting Removed
Dataset in REHO for GWP Optimization
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The most significant difference between these two results is that the former primarily uses electricity
to power heat pumps in order to produce heat and meet the demand, while the latter relies mainly
on direct heat from the district heating network. The root cause of this behavioral difference is
that, in the original dataset, heat is more expensive than electricity in terms of GWP, whereas
the new database does not reflect this. However, due to the direct and more efficient use of heat,
the GWP of heat is indeed lower than that of electricity, as is also evident from the Ecoinvent
database:

Figure 25: Electricity Market Activity in
Ecoinvent

Figure 26: Heat Market Activity in Ecoin-
vent

The final optimal results for GWP are presented below:

Figure 27: Final Simulation Results for GWP Using the New Methodology for Spain’s Case Study
in the Current Scenario

This indicates that 42,472.24 kg CO2-eq is emitted over one year in the current energy system. The
corresponding energy profiles, with a weekly moving average, are shown below:
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Figure 28: Energy Profiles with a Weekly Moving Average for Spain’s Case Study

4.2.2 Scenario 2: Fossil-Free Scenario

A fossil-free optimization scenario was conducted, excluding fossil-fuel-based technologies, while
maintaining the same EUDs (End-Use Demands) through consolidated building features. The
optimized GWP results are shown below:

Figure 29: Fossil-Free Scenario GWP Optimization for Spain’s Case Study

This scenario achieves a reduction of approximately 36.8% in global warming potential. And the
corresponding Sankey is shown below:
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Figure 30: Sankey Diagram of Energy and Material Flows for Fossil-Free Scenario GWP Optimiza-
tion in Spain’s Case Study

As shown in the figure, fossil fuel-based technologies have been completely replaced by photovoltaics
(PV). The energy system, utilizing PV panels, not only meets the district’s electricity demand but
also exports excess electricity to the grid, thus offsetting some of the global warming potential.
Over the course of one year, the PV system produces 369.67 MWh of electricity. A portion of this
energy satisfies the district’s electricity demand, while 284.61 MWh is used for domestic hot water
and space heating. Despite this, heat from the district heating network still plays a major role in
meeting these demands. The energy profile evolution over time is illustrated below:

The energy demand is still the same as the fig 28. At the beginning and end of the year, the
demand for heat is higher, resulting in an increased contribution from the district heating network
(DHN). For other energy demands, the trend remains relatively stable. Future improvements to
this energy system, from a GWP perspective, should focus on increasing PV panel production
capacity to further reduce emissions.

4.3 Results for normalization
For the normalization process, we chose the simplest scenario, meaning there are no enforced units,
no additional units to include, and no extra features. This allows us to optimize 29 times, resulting
in a 29×29 matrix where each index represents an optimized objective, and each column contains
the values of other indicators when optimizing for the corresponding indicator.

Normalization is performed by extracting the maximum and minimum values for each indicator
and applying the following equation:

Xnormalized = X − Xmin
Xmax − Xmin

(15)

To further simplify the problem, we calculate a 29×29 Pearson correlation coefficient matrix.
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rXY =
∑(Xi − X̄)(Yi − Ȳ )√∑(Xi − X̄)2 ∑(Yi − Ȳ )2

(16)

This approach allows us to select a few representative indicators that can capture the essential
characteristics of the entire dataset. Instead of optimizing all the indicators, we only need to
optimize the selected representative indicators. From these, we can then derive the maximum
and minimum values for all the indicators, significantly reducing the computational complexity.
Normalization is done by changing the objective for the scenario. The next question is that how to
reduce the complexity for normalization.

By visualizing the Pearson correlation matrix with a heatmap, as shown in Figure 31, we can
identify three distinct clusters of indicators. For the detailed code scripts, newly generated figures,
and CSV data, please refer to my GitHub repository.

The heatmap reveals three distinct areas of correlation. Indicators from CCEQL to PWEQS, and
from MEU to PWEU, including LTBDV and TTEQ, exhibit strong positive correlations with each
other and strong negative correlations with indicators such as IREQ, LOBDV, TPW, WAVHH,
and THH, forming a second cluster. The remaining indicators belong to a third group, as they
display slight positive correlations with the first group and slight negative correlations with the
second group. To further refine the selection process, the K-means clustering method is applied to
identify three representative indicators from these clusters.
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Figure 31: Pearson Correlation Matrix Heatmap

Thus, by means of k-means clustering method, we could get 3 representative indicators:

Figure 32: K-means Selected Indicators

Instead of optimizing all indicators, we focus on optimizing three representative categories: Climate
Change, Ecosystem Quality, Long Term (CCEQL); Ionizing Radiation, Ecosystem Quality (IREQ);
and Human Toxicity, Cancer, Short Term (HTXCS). This allows us to derive a comprehensive 3x29
environmental impact matrix for all indicators. From this matrix, we extract the maximum value
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for each indicator, significantly reducing time complexity. PCA is used for clusters visualization as
the Appendix Fig 35 shows.

4.4 Results for double counting removal
In fact, all the results above are on the basis of double counting removed database. But to make
results more comprehensive, the intermediate results of this process will be analyzed in this sec-
tion.

As previously mentioned, to create a more reliable and convincing database, we addressed the issue
of double counting by eliminating repeated energy and material flows within the energy system.
This process ensures that no flow is accounted for more than once, leading to more accurate
results. Several intermediate results were generated to demonstrate the impact of double counting
removal, highlighting how this step refined the overall data and improved the consistency of energy
and material flow tracking throughout the system. These results provide a clearer picture of the
system’s actual performance and efficiency after the correction.

Table 3: Energy Technologies Double Counting Removal (Compact)

Operation Value Unit Removed Activity
NG_Boiler, Operation 6.86e-07 unit gas boiler (GLO)
NG_Boiler, Operation 0.02865 m3 natural gas (CH)
OIL_Boiler, Operation 0.0249 kg light fuel oil (CH)
OIL_Boiler, Operation 7.04e-07 unit oil boiler, 10kW (GLO)
WOOD_Stove, Operation 1.39e-07 unit wood furnace, 50kW (CH)
WOOD_Stove, Operation 0.0705 kg wood chips (RER)
HP_Air, Operation 0.0992 kWh electricity (CH)
Elec. transf. med to low 1.0276 kWh elec. (med voltage, CH)
PV, Operation 1.2051e-05 unit PV, slanted roof (CH)
NG_Cogeneration, Operation 0.2377 m3 natural gas (CH)

The column titled "Removed Activity" lists the flows that were removed from the corresponding
entries in the "Operation" column. For instance, 6.86e-07 units of gas boiler (GLO) construction
were removed from "NG_Boiler, Operation." This method allows us to easily validate the double
counting removal process by comparing these intermediate results with the activity exchanges
in the Ecoinvent database. Through this comparison, we can ensure that all duplicated flows
have been accurately identified and removed, thereby enhancing the reliability and integrity of the
dataset.

There are additional intermediate files, such as double_counting_removal.csv and double_counting_removal_count.csv,
which provide a more direct representation of the removed energy and material flows. These files
contain columns for energy and material flows, with indexes corresponding to different technologies.
They show both the amount of flows and the number of flows removed for each technology. For
instance, the figure below illustrates the count of double counting flows removed. In the case of
the Electrical Heater, the count reaches 31. This is because the operation for the Electrical Heater
in Ecoinvent relies on the "market for electricity (CH)," which encompasses multiple electricity
generation methods. Since each method involves different locations, the number of removed flows
is relatively high for this technology.
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These files offer a clear and structured way to trace and quantify the double counting removal
process, ensuring transparency and accuracy in the adjustment of the dataset.

Figure 33: Double Counting Removal Count for Each Technology

For more detailed results on the newly created database, and due to the size and complexity of the
datasets, please refer to my GitHub repository. The relevant outputs can be found in the directory
REHO/REHO_database/results.
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5 Conclusion
Implementation of a New LCA Methodology
In this research, I successfully implemented a new Life Cycle Assessment (LCA) methodology,
integrating the LCA framework from the Energyscope energy system tool into the existing model.
The generalization of LCA indicators through Brightway2, combined with the incorporation of
World IMPACT+ methods, allowed for a more comprehensive environmental impact assessment.
This integration ensures that a wider array of environmental factors is considered, contributing to
more robust analyses.

Improvement in Data Accuracy
To address the issue of double-counting within the ecoinvent database, I applied machine learning
techniques to create mapping files. These files enabled the accurate mapping of REHO technologies
to corresponding activities in the ecoinvent database. The development of model characteristic files,
unit conversion profiles, and other data files facilitated a seamless integration between the energy
system model and ecoinvent. This approach significantly improved the accuracy of the data used
for the LCA.

Integration and Validation of the New Framework
The enhanced LCA framework was successfully incorporated into both the AMPL model and
Python scripts, enabling more efficient optimization. A comparative case study for Sion, utilizing
both the old and new databases, highlighted the advancements made through this new methodology.
The case study results provided strong validation of the methodology’s effectiveness and its potential
to enhance environmental impact assessments.

Real-World Application and Insights
I applied the new REHO version to a real-world case study in Spain. Through correlation analysis
and the use of K-means clustering, representative LCA indicators were selected and employed in
multi-objective optimization. This provided valuable insights into the environmental impact of
different energy system configurations, illustrating the practical benefits of the new LCA method-
ology.

Overall Impact and Future Potential
The integration of the new LCA framework demonstrated significant improvements in both the
accuracy and comprehensiveness of environmental assessments. The case studies conducted offer
strong validation of the approach, and the results from the multi-objective optimization emphasize
its applicability to real-world scenarios. This research lays a solid foundation for future applications,
with the potential to further improve decision-making in energy system planning.
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6 Discussion
Data Availability Gaps
Despite efforts to ensure comprehensive data coverage, certain technologies and resources were
not adequately represented in the ecoinvent database. Notably, information on Information and
Communication Technology (ICT) and data heat was unavailable, as these components are not
included in the database. This limitation in data availability hindered a full assessment of these
aspects within the study.

District Heating Network Generalization Challenges
The generalization of certain features, particularly the District Heating Network (DHN) scenario,
posed challenges. The specific modeling approach used for DHN in this project limited its ability
to represent the broader variability of such systems. Further refinement in the modeling of DHN
is necessary to ensure more accurate and generalizable LCA results.

Partial Completion of Multi-Objective Optimization
Due to time constraints, the multi-objective optimization process was only partially completed.
One of the major tasks left unfinished was the allocation of weights for each Life Cycle Assessment
(LCA) indicator, which was intended to be handled by a generative algorithm. The incomplete
optimization limits the comprehensiveness of the results and points to an area that requires further
attention in future studies.

Double Counting Removal Database Globalization
The generation of the double counting removal database was another area with incomplete coverage.
Only the database for Switzerland was fully developed, although ecoinvent primarily includes data
from Switzerland and Canada. This gap limits the robustness of the current study’s findings, as
a more expansive dataset is needed to avoid double counting across other regions. A sensitivity
analysis should be conducted to assess the implications of this limitation.
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A Appendix
For all the codes, please refer to [my github].

More specifically:

• REHO Methodology Integration:
./REHO/reho

• REHO Database Generation:

– For database generation results:
./REHO_databases/results

– For double counting removal:
./REHO_databases/datasets

– For mapping files:
./REHO_databases/REHO_data/CH

• Normalization:
./reho/normalization

• Case Study:

– Scenario 1:
./VEO_Spain/scenario1

– Scenario 2:
./VEO_Spain/scenario2

• Scripts for Case Study Results:
./scripts/example/3a_read.csv
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District level for REHO

Figure 34: Predefined Energy System Model at District Scale in the Renewable Energy Hub Opti-
mizer (REHO)

The primary difference between district-scale and building-scale systems lies in whether the network
is treated as equivalent to the grid. At the district level, the network encompasses not only the
grid but also additional connections between the transformer and the district units.

Mapping files
All the required files generated manually can be found in [my github]
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Visulization of clusters by means of PCA

Figure 35: Three Clusters Classified by Principal Component Analysis (PCA)

iii



Internship Report
Zhichuan MA

Integration of LCA into Renewable
Energy Hub Optimizer (REHO)

Figure 36: Five Clusters Classified by Principal Component Analysis (PCA)
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Detailed description of building characters in
Spain

Figure 37: Raw File of Building Characteristics for Spain’s Case Study - 1

Figure 38: Raw File of Building Characteristics for Spain’s Case Study - 2

v



UNIVERSITÉ CATHOLIQUE DE LOUVAIN 
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl


	Abstract
	Introduction
	Background
	Energy system
	LCA
	REHO - Renewable energy hub optimizer

	Research gap

	Methodology
	Original LCA Methodology in REHO
	REHO Construction Model
	REHO Operation Model
	LCA indicators

	New Methodology
	LCA Methodology integration
	LCA database creation
	Normalization


	Case Study
	Case Study for Lugaritz-Matía Community in Spainnoauthorpilot2024
	Case study for verification

	Results
	Results for Sion's case study
	Comparative Analysis Between the Old and New Methodologies
	Generalization for LCA indicators

	Results for Spain's case study
	Scenario 1: current scenario simulation
	Scenario 2: Fossil-Free Scenario

	Results for normalization
	Results for double counting removal

	Discussion and Conclusion
	Conclusion
	Discussion

	Appendix
	Introduction
	Background
	Energy system
	LCA

	REHO - Renewable energy hub optimizer
	Research gap

	Methodology
	Original LCA Methodology in REHO
	REHO Construction Model
	REHO Operation Model
	LCA indicators

	New Methodology
	LCA Methodology integration
	Resource
	Construction
	Operation

	LCA database creation
	Generalization of LCA indicators
	Double counting removal
	Refactor
	Files mapping

	Normalization
	Normalization
	Correlation analysis among indicators
	Multi-objective optimization


	Case Study
	Case Study for Lugaritz-Matía Community in Spainnoauthorpilot2024
	Introduction
	Facility Overview
	Information to input
	Building Characteristics Datafile Format
	2 different scenarios

	Case study for verification

	Results
	Results for Sion's case study
	Comparative Analysis Between the Old and New Methodologies
	Generalization for LCA indicators

	Results for Spain's case study
	Scenario 1: current scenario simulation
	Scenario 2: Fossil-Free Scenario

	Results for normalization
	Results for double counting removal

	Conclusion
	Discussion
	References
	Appendix

